
J .  FZuid Mech. (1968), VOZ. 31, part 3, pp.  529-546 

Printed in  Great Britain 
529 

Experimental and theoretical study of the stability 
of plane shock waves reflected normally from perturbed 

flat walls 

By ha. G. BRISCOE-~AND A. A. KOVITZ 
The Gas Dynamics Laboratory, 

Department of Mechanical Engineering and Astronautical Sciences, 
Northwestern University, Evanston, Illinois 

(Received 29 June 1967) 

The rate of damping of perturbations on a shock wave reflected from a perturbed 
flat wall was measured in a shock tube. Incident shock wave Mach numbers of 
1.45 and 1-09 in air together with sinusoidal and Gaussian wall perturbations 
were employed. These measurements were compared with a modified form of a 
linearized theory due to Zaidel(l960). The linearization was performed about the 
basic solution of a plane shock wave reflected normally from a flat wall. 

The rate of decay and the frequency and phase of oscillations agreed very well 
with the theoretical predictions; the amplitudes of the oscillations were some- 
what larger than predicted. The reflected shock shape was initially in good agree- 
ment with theory, but higher frequency perturbations on the reflected shock front 
caused deviations from the predicted shape after the shock front had travelled 
about one wall-wavelength away from the wall. 

The generally satisfactory agreement between theory and experiment supports 
the use of linearized analysis in predicting shock wave stability. 

1. Introduction 
Previous experimental studies of the stability of plane shock waves have not 

shown good agreement with linearized theories; this seems to be partially due 
to the experiments and partially due to the theories. Lapworth (1957) experi- 
mentally considered the motion of a plane shock wave through a charnel con- 
taining small ' roof-top ' disturbances on the walls; the consequent perturbations 
to the ends of the shock wave produced a different shock shape that underwent a 
damped oscillation and ultimately approached a planar form again. Lapworth 
compared his experimental results with the theory of Freeman (1957) for the 
same problem. Unfortunately, Freeman's solution was an asymptotic result 
valid many channel-diameters away from the location of the roof-tops; this, in 
combination with the experimental difficulties of compromising between small 
perturbations and perturbations that are large enough to measure, apparently 
prevented agreement between theory and experiment except for the frequency 
of the oscillations of the diffracted shock front. Both amplitude and phase of the 

t Now at the von KArmAn Institute for Fluid Dynamics, Rhode-Saint-Genese, Belgium. 
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oscillations were in poor agreement with the predictions; agreement was worse 
for the lower Mach numbers. 

Sakharnov et aZ. (1965) studied shock waves in metal. An explosion was 
produced next to a block of metal; the side of the block adjacent to the explosion 
had a sinusoidal profile. The resulting sinusoidal shock wave propagated through 
the metal and was recorded photographically by a fluorometric device. They 
supposed that this situation could be modelled as a piston-produced shock wave 
according to another analysis by Freeman (1955). Rather large deviations 
between experimental and theoretical perturbation-damping rates were stated 
to be caused by the viscosity and plasticity of the metal. 

The reflexion of a plane shock wave from a corrugated surface has been theore- 
tically considered by Blackburn (1953) using a conical flow technique originated 
by Lighthill (1949, 1950). Blackburn’s solution has two major faults with 
respect to performing an experiment to check its validity: the initial shock shape 
is assumed to be coincident with the wall shape, a statement that is clearly in 
conflict with an actual reflexion process, and the useful solution is only available 
for the far-field reflexion; i.e. many wall-wavelengths away from the wall. The 
experimental difficulties in measuring far-field perturbation-damping are over- 
whelming; a near-field solution to the shock reflexion and stability problem is 
very desirable. 

Freeman (1955) has given an excellent discussion of shock production by the 
impulsive motion of a corrugated piston. He superposes conical-field solutions 
and obtains a complete solution to the linearized problem. Asymptotic behaviour 
for large time, large Mach number, and small Mach number are explicitly 
derived. 

Zaidel (1960) also considers Freeman’s piston problem. His analysis avoids 
conical-field solutions; rather, it reduces to the solution of a hyperbolic system 
of equations with boundary conditions on the moving boundaries. He also obtains 
a complete solution, and discusses its asymptotic behaviour with respecb to 
large time, large Mach number, and small Mach number. For our purposes 
Zaidel’s complete solution is preferable because it is much easier to use in con- 
junction with a high-speed computer. A comparison of Zaidel’s complete solu- 
tion with that of Freeman is not feasible; however, Zaidel shows that the low 
Mach number limiting cases for both are identical. We also found that Zaidel’s 
formulation was easily extended to arbitrary wall shapes. 

In  the manner of Zaidel, $2 describes the theory for perturbation-damping on 
a shock wave reflected normally from a slightly wavy wall; $ 3  extends that 
theory to the case of an arbitrary wall shape, in particular, to reflexion from a 
Gaussian curve. The apparatus and experimental procedure for validating the 
theories are described in $4, and results and conclusions are presented in $ 5 .  

2. Linearized theory of shock reflexion from a wavy wall 
When a step-shock impinges normally on a rigidJlat wall the gas adjacent to 

the wall is brought to rest by an instantaneously reflected step-shock of the 
appropriate strength; see, for example, Courant & Friedrichs (1948, p. 152). 
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If, however, the step-shock impinges normally on a rigid wavy wall the reflexion 
process does not occur instantaneously (see figure 1):  figure 1 b shows the shock 
to be partly incident and partly reflected; figure l c  corresponds to the first 
instant when the shock front is totally reflected. The reflected front is clearly 
not flat. Figures 1 d and 1 e show schematically the expected behaviour of the 
reflected front with increasing time: the perturbations damp out as the reflected 

FIGURE 1. Schematic representation of shock reflexion from a wavy wall: (a)  incident 
shock prior to  reflexion; ( b )  early period of reflexion, containing both incident and re- 
flected shock fronts; (c) instant when shock front is completely reflected; ( d )  perturbed 
reflected shock front, out-of-phase with wall shape; ( e )  almost flat reflected shock with 
perturbation in-phase with the wall. 

front moves away from the wall; finally the reflected front becomes flat with a 
strength equal to that of a step-shock reflected from a flat wall. 

The general problem, for arbitrary wall slopes, will not be attempted; rather, 
the wall slopes will be assumed small enough to allow all governing equations 
and auxiliary conditions to be linearized about the known solution for reflexion 
from a flat wall. 

The flow in the region between the reflected shock front and the wall will be 
governed by the linearized Euler equations; at  the shock front the Rankine- 
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Hugoniot equation will relate the perturbed velocities, density and pressure to 
the local perturbed shock velocity and shock slope. 

The complete specification of the problem requires a knowledge of the flow 
field at some initial instant of time. We choose that initial instant to correspond 
to figure 1 c, at which time the reflected front is completely formed. For sufficiently 
small wall slopes, the reflected front lies everywhere very close to the wall; the 
perturbations in the region between the wall and the reflected front can be shown 
to be second order in wall slope at  that instant, and are, therefore, neglected. The 
initial shock-front has the same wavelength as the wall, but with a different 
amplitude; i.e. if the wall is sinusoidal we assume that the reflected front is also 
sinusoidal, with a different amplitude. The above assumptions regarding the 
initial state are not exact; their validity will be supported by the experimental 
results. 
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FIGURE 2. Nomenclature diagram for the linearized reflexion analysis. 

An essentially equivalent linearized problem has been solved by Zaidel(1960). 
He considered the shock wave formed by the impulsive motion of a piston having 
a sinusoidal profile of small slope. In  this case the initial shock shape is exactly 
the piston shape, and the initial value problem is precisely prescribed. The 
perturbed step-shock propagates into stationary gas; the gas between the shock 
front and the piston face moves according to the linearized Euler equations. 

If a velocity equal and opposite to the piston velocity is imposed on the piston- 
shock wave-gas configuration of Zaidel’s problem, we obtain a flow which is 
kinematically similar to that of a reflected shock-front moving away from a 
stationary wall. Zaidel’s analysis becomes applicable in all respects, except for 
the assumptions necessary to establish the initial shock shape in the reflexion 
problem. 

We shall outline the analysis for the reflexion problem, making use of Zaidel’s 
analysis. A detailed exposition may be found in Briscoe (1967). 

Figure 3 is a schematic diagram of the reflexion problem; p ,  p, c = (yp/p)B, 
u and v are pressure, density, sonic velocity and the two fluid velocities, 
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respectively; y is the ratio of specific heats for a perfect gas; subscripts 1,3 and 3 
refer to the unshocked gas, the once-shocked gas, and the unperturbed twice- 
shocked gas (reflected region), respectively; p ,  p, u and v without subscripts are 
the respective perturbation quantities in the reflected region (3). Ui and 
Mi = U,/c, are the incident shock speed and incident Mach number, respectively; 
U, and M, = (U,+u2)/e2 are the unperturbed reflected shock speed and Mach 
number, respectively. The wall shape is given by x,(y) = ~exp(iky), with e the 
wall amplitude and k = %/A; h is the wall wavelength. The real part of the 
complex exponential in the resulting solution will, of course, be utilized. At time 
t the unperturbed reflected-shock is at x,(t) = U,t; the shape of the perturbed 
shock is given by $(y, t ) ,  as measured from x,(t). 

The linearized Euler equations applied to region 3, for a perfect gas, take the 
form 

where s is the perturbation entropy per unit mass, and the continuity equation 
has been written in terms of the pressure using c$ = yp3/p3. It should be noted 
that the first three equations of (2.1) may be combined to form 

a 2 p p  - c$ (a2p/aX2 + aZp/ag) = 0; 

aZjqat2 - c$ a2p/ax2 + k2c;ji = 0, 

if, as we shall assume, p ( x ,  y , t )  = p(x,t)  exp (iky), then we obtain 

a form of the Klein-Gordon equation (Morse & Feshbach 1953, p. 138). 
The Rankine-Hugoniot jump conditions at  the reflected shock-front are 

expressed in terms of the normal velocity relative to the fronix This introduces 
$ and a$jay, where ( * ) = a/at + V,  (ajax); # is the change in @ while holding y 
constant, as measured relative to x, = V,t. In  this case $ = a$/at since $ is 
assumed not be to a function of x. After substitution of the flow properties in terms 
of unperturbed plus perturbed quantities the relations among the perturbation 
quantities, evaluated at  the shock front x = V,t, become 

(2.3) 

(2.4) 



534 M .  C. Briscoe and A .  A .  Kovitz 

the factor e(U,/7&) is the distance moved by the portion of the reflected shock 
coming normally off the wall at y = 0, 5 2 4  f 4h, ... during the time 2e/V,. 

We require the fluid velocity to be tangent to the wall for all time; to first order 
in wall slope this demands zc(0, y, t )  = 0; from the first of (2.1) we obtain 

(2.5) q o , y , t )  = ap(o,y,t)/ax = 0. 

The shock boundary conditions evaluated at x = t = 0 yield, in view of (2.5), 

Note that the presence of the wall requires $(y, 0) = 0, which leads to 

The linearized problem is now completely specified in terms of (2.1), (2.2), 
(2.4), (2.5) and (2.6). This formulation is more explicit after elimination of the 
shock perturbation $(y,t).  The second and fourth of equations (2.2) may be 
combined, after differentiation by a/ay and by a/at + U, (a/ax), respectively, to  
yield a new shock boundary condition, 

P(O,Y, 0) = 0. 

WW, Y, t )Px  = U-l(pgl  -u2/B) w U , t ,  Y, t)PY, (2.7) 

where the second of (2.1) has been used to eliminate av(qt,y,t)/at. From the 
first and second of (2.2), 

(2.8) 

The y-dependence is extracted from all dependent variables by the physical 
assumption 

~ ( x ,  y, t )  = F(x,  t) exp(iky). 

In  accordance with Zaidel ( 1960), new non-dimensional independent variables, 
r ,  8, are introduced by 

U ( U , t ,  y, t )  = (A/B)P(U,t, Y, t ) .  

rcosh8 = kc,t, rsinh8 = kx; 

or, upon solving for r and 8, 

r = kc,t[l- ( x / ~ , t ) ~ ] * ,  8 = arc tanh (x/c,t). (2.9) 

In  terms of r ,  8, the wall is at  8 = 0, and the reflected shock-front is at O,, = arc 
tanh ( Q / c 3 ) ;  the initial instant is given by r = 0, because lim lx/c3tl is finite for 

this hyperbolic problem. The dependent variables are re-named as 
x ,  t-0 

B(r, 8 )  = p/p,c,, &(r, 8)  = ;It, B(r, 8)  = iv. 

Then the governing equations and auxiliary conditions may be written as 

(2.10) 

(3.11) 

a&/& + r-l( a@/a8) + 6 sinh 8 = 0, 

a@/& + r-l(aa/aO) + B cash B = 0, 

a2@/ar2 + r-l(ap/ar) + p - r-2(a2@/a82) = 0, 

a(r ,  0) = aj3(r, o)/as = 0, 
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a(r) ' 0 )  = K 1 $ ( y 7  OO), 

a8(r, 0 , ) p  = ( K ,  sinh 0, + cosh 8,) @(r,  8 0 ) ,  

I q o ,  0) = @(o, 8) = 0, 

a(o,e) = ao. 
In  the above equations 

Kl ( A / B ) P 3 C 3 ,  K 2  ( u 2 P 3 / B -  ')/p) 
p = GIG3, a, = u,lcs(l + u,/u,), 

8, = arc tanh p, K3 = 2 sinh 8, (K ,  sinh 8, + cosh 8,) - Kl. 
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(2.12) 

(2.13) 

Note that the last of equations (2.10) derives from the Klein-Gordon equation, 
introduced after (2.1). 

Following Zaidel, the system of equations and auxiliary conditions in r ,  8 is 
transformed to a system in s, 8 through the application of a Laplace transform, 

G(s, 8)  G g(r,  8)  e-wdr. 
J O W  

In  particular, the last of equations (2.10) becomes 

(s2+ 1) ( a 2 P l a S 2 )  + 3s(aP/as) + P - a2P/a82 = 0,  (2.14) 

which does not afford any apparent simplification over its r,  0 version. However, 
at this point Zaidel replaces the independent variable s by q through the relation 
s = sinhq and sets W(q,  8)  = Pcoshq; then (2.14) becomes the wave equation 

a2w;v/aq2-a2w/a82 = 0, (2.15) 

the general solution of which is W(q,  8) = Yl ( q  + 8)  + P, (q  - 8). The wall boundary 
condition aW(q, O ) / M  = 0 requires Pl = Y, = P. 

The Laplace transform of the first of equations (2.10) may be written as a 
perfect differential, after insertion of q and W ,  and then integrated with respect 
to q:  

- Usinhq+[P(q+8)-P(q-8)]- Vsinh0 = 0; (2.16) 

this equation, relating U ,  V and P, satisfies U(q,  0) = 0. 
On the reflected shock 

) (2.17) 
W q 7  0,) cash = Kl W(q7 0 0 ) ,  

V(q, 8,) sinh q cosh q - 8, cosh q = ( K 2  sinh 8, + cosh 0,) W(q,  0,). 
Equations (2.17) relate U ,  V ,  W on the reflected shock; together with (2.16), 
evaluated on 0 = 0,) we obtain a difference equation relating P(q+0,) and 
P(q - 8,). Briscoe (1967) gives the details of the solution, as obtained by Zaidel. 
The essential step in solving the difference equation is the assumption of a solu- 
tion in the form of an infinite series of terms B, (0,) exp [ - (2n+ 1) q]; the B,(0,) 
are determined by the difference equation after setting the coefficients of 
exp [ - (2n+ 1) q] equal to zero for all n. The expression for 

W(q7 8 )  = P(q+ 8 )  +P(q - 8)  

is then 
a, cosh(2n+ 1)8 

= zo Bn cosh (2n+ l)8, --exp[-(2n+1)ql7 w(q' (2.18) 

with the B, as known consbants which depend upon the unperturbed reflexion 
problem. They are exhibited after (2.21). 
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The Laplace inversion of (2.18) is straightforward since 

exp ( - mq) = [(s2 + 1 )+ - SIM; 

a standard Laplace inversion yields 

(2.19) 

where the J2n+l ( r )  are Bessel functions. Returning to physical variables we may 
obtain, on the reflected shock, 

m 
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FIGURE 3. Theoretical perturbation damping for shock reflexion from a sinusoidal wall. 

From the shock boundary-conditions in terms of $(y,t) = $(t)exp(iky) we 
may now perform a time-integration and develop the reflected shock shape as 

A form which is particularly suitable for computation was stated by Zaidel, and 
described in more detail by Nikolaev (1965) and Briscoe (1967); it is 

(2.21) 

with 
Dn = (Kl+K,)-l{[K,+tanh(2n+ 1)0,]Bn-B,~,[iT,-tanh(2n- l)O,]}, 
B, = - 20, sinh @,/(K,  + tanh @,), 
B, = B, [ (K,  - 2K,) + tanh OO]/(K1 + tanh 30,) 

and 
B,+,[K,+tanh(2n+3)8,]+2BnK,+B,~,[K,-tanh(8n- l)O,] = 0. 

Zaidel’s results appear with a minus sign in front of the series in (2.31). Com- 
putation shows that the series term is not negligible; therefore, the apparently 
typographical sign difference is significant. Our experimental results will be 
seen to agree well with (8.21). 
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Equation (2.21) is plotted in figure 3 for several incident Mach numbers. We 
see that the damping behaviour is dominated by JO(ys). As Mi+ 1 the first zero- 
crossing of @ / @ ( O )  is found at very large values of xJh. In  $4 the experimental 
results will be seen to compare favourably with these analytical curves. 

- -  

X l h  

FIGURE 4. Theoretical distribution of perturbation density for several positions of reflected 
shock-front : incident Mach number is 1.404. 

An additional result, derived by Briscoe (1967), gives the perturbation density 
in the reflected region. The perturbation density is not given by the isentropic 
formula since the reflected shock-strength varies with y and t ;  however, the 
entropy perturbabion is only a function of x and y by the last of equations (2.1); 
thus, the local density perturbation in a fluid element depends upon the entropy 
perturbation received by it at an earlier time due to the passage of the non- 
uniform reflected front; we can get 

where < = x/xs. Note that Bn has the dimensions of velocity. 

will be seen to be in good qualitative agreement with the experimental data. 
Equation (3.22) is plotted for several instants of time in figure 4. These results 
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3. Extension of linearized theory to arbitrary wall shapes. Specific result 
for a Gaussian wall 

The formulation in $2, as given by (2.1), (2.2), (2.3)) (2.5) and (2.6) is not 
restricted to sinusoidal walls. The initial conditions, equations (2.4), must be 
specified, but need not be sinusoidal. For example, it  may be some other periodic 
function; or it  may be non-periodic. The periodic initial shape is appropriately 
treated by Fourier series techniques; the non-periodic initial shape can be 
analysed using the Fourier transform, We shall treat the non-periodic problem 
only since one of our experimental results concerns a Gaussian wall. 

The Fourier transform is defined by 

its inverse is given by 

The requirements for the existence off*(k) and its inverse are discussed by Morse 
& Feshbach (1953, p. 456), for example. 
If the system of equations (2.1), (2 .2) ,  (2.3), (2.5) and (2.6) is Fourier trans- 

formed with respect to y, a new system is obtained for the new dependent 
variables p*, u*, v* and s* with independent variables x, t and parameter k; 
this system is identical in form to that resulting from replacing all dependent 
variables P(z,  y, t )  by F(x,  t )  exp(iky). This being the case, we may write down 
the solution for a chosen k; the Fourier transformed shock shape is, in analogy 

to (2.21), m m 

$*(rs;W = $*(O;k) iJo(r,)+ n= z 1 W Z , ( r , ) /  11= x 0 4 
where, we recall, 

The inverse yields 
rs ( t ;k)  = ( k u , t @ ) ( l - P ” k  

where 
1 P + a  

$*(O;  k)  = - $(y, 0) e--ikydy. (3.2) 

If the wall is given by the Gaussian x,(y) = Eexp ( - y2 /2a2) ,  then the initial 
shock shape is assumed to be 

(3.3) $(y, 0) = €(I+ v,/v,) exp ( - y 2 / 2 a 2 ) ;  

e is the maximum height, and a is the standard deviation of the Gaussian. 
Equation (3.2) may be integrated to yield 

$ * ( O ;  k )  = m( 1 + U,/U,) exp ( - k2a2 /3 ) .  (3.4) 

The integration of (3.1) involves integrals of the form 
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after exp (iky) is expanded as a power series in k y ;  Watson (1966, p. 394), dis- 
cusses and evaluates them. The computation is much simpler if we content 
ourselves with $(O, t ) ;  we require 

a result given by Watson (1966), where I, (q) = (i)-”J, (ir). Then (3.1) can be put 
in the form 

where w = ( X s / 2 4 3 ) 2  (1 - p”. (3.7) 

For the Gaussian wall, the standard deviation v plays the same role as the wave- 
length h of the sinusoidal wall. Several computations of (3.7) are shown in figure 5 ;  
the decay of the peak amplitude is now monotonic as contrasted with the 
damped oscillation for the sinusoidal perhurbation shown in figure 3. This con- 
trast is supported by the experimental results. 
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FIGURE 5. Theoretical perturbation damping for shock reflexion from a Gaussian wall. 

4. Experimental apparatus 
Figure 6 is a schematic diagram of the experimental apparatus. The shock 

wave is produced by a conventional, rectangular cross-section, diaphragm 
shock tube; the dimensions are 1 in. by 3 in. with a compression chamber length 
of 37 in. and an expansion chamber length of 61 in. The test section has 1 in. 
thick plexiglass windows and is 24 in. long. The diaphragms are cellulose acetate 
of thickness 0.0015 in. and 0.005 in., depending on the Ma,ch numbers desired; 
they are ruptured by an air-acbuated needle on the expansion-chamber side of 
the diaphragm. 
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Compressed air provides the compression-chamber pressure; the expansion 
chamber operates at  ambient conditions. Although this arrangement limits the 
pressure ratios and the Mach numbers obtainable, and requires one to use air as 
a working medium, it contributes much simplicity to the experiment. 

Mirror 

Mirror 

FIGVRE 6. Schemat,ic diagram of the experimental apparatus. 

Two barium-titanate, piezoelectric transducers next to the test section moni- 
tored the incident shock speed; their outputs were amplified and used to start 
and stop a digital counter. Another transducer near the end of the test section 
provided the signal to start the delay electronics used to trigger the photographic 
system. A Rutherford A-11 delay unit gave digital delays from 0.1 ,us to 1 s. 
System jitter was less than 2 ,us on an average delay time of about 200 ,us. 

An EG and G stroboscope with two discharge units was triggered at the desired 
instant by the delay electronics. The interval between the flashes was determined 
by a variable oscillator; by continuously hetrodyning the variable oscillator 
against a crystal oscillator and observing the beat note, the interval between 
flashes was measurable within a few parts per million. A standard double-mirror 
schlieren system with a vertical knife-edge made visible the density gradients 
in the test section; 45 in. focal length mirrors and a 1 mm width of the light- 
source slit provided high sensitivity. The pictures were recorded on 35mm 
Kodak Plus-X film and developed normally in D-76. The magnification of the 
test section on the film was about 1/3; data were measured from the negatives 
with an optical comparator having 20 x enlargement on the viewing screen and 
a traversing table movable in two dimensions by micrometers calibrated in ten- 
thousandths of an inch. 

One picture was taken per diaphragm rupture; the two-flash stroboscope 
allowed the measurement of shock perturbations at  two shock positions and in- 
dicated the speed of the mean location of the wavy reflected shock between the 
two positions. Repeatability of measured incident-shock speed was within 
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3 yo, and measured reflected-shock speed was within 4 %. The sinusoidal per- 
turbations were placed on the shock front by wavy blocks mounted in the end 
of the test section; the blocks were machined according to templates scaIed down 
from large plots of sinusoids. Three wavy walls were used, all of which had 
0.580 in. wavelength and 5 waves; the amplitudes were 0.015,0-029 and 0.058 in. 
The maximum slopes were approximately 9,16  and 39 degrees, respectively. The 
Gaussian wall also was machined from a template; its maximum height was 
0.050 in. and its standard deviation was 0.082 in. 

Incident Mach numbers were calculated from the measured incident shock 
speeds and a knowledge of the unshocked conditions in the expansion chamber; 
this yielded calculated velocities and sound speeds in the flow behind the shock 
wave, from which the reflected Mach numbers could be calculated once the 
measured reflected-shock speeds were known. 

Tests were run at two conditions; incident Mach numbers were measured as 
1.45 and 1.09 and reflected Mach numbers were 1.36 and 1.07, respectively. 
The corresponding pressures in the compression chamber were 90 and 20 psig. 

The measured reflected-shock speeds were found to be about 4 %  below the 
calculated speed based on the known incident conditions; this corresponds to 
decrements in the reflected Mach number of about 29 yo. None of the schlieren 
photographs showed any evidence of reflected shock-boundary-layer interaction 
asdiscussed by Mark (1957); thisisnot surprisinginview ofthelowMachnumbers 
used for the experiments. 

Amplitudes of the perturbations on the shock front were measured along the 
line y = 0; that is, along the line of symmetry half-way between the top and the 
bottom edges of the test section. Data for the perturbation-damping theory 
were measured directly from the schlieren negativesf. 

A different approach had to be used to obtain the distribution of perturbation 
density between the reflected shock-front and the wavy wall. One end of a fibre- 
optic cable was fastened to the centre of the screen on the optical comparator 
and the other end connected to a photomultiplier-amplifier system; as the 
movable table on the comparator was traversed so as to scan the negative under- 
neath the fibre optic, the output of the amplifier gave a voltage reading linearly 
proportional to the intensity of the light passing through the schlieren negative. 
Because the negative opacity is linearly related to the amount of illumination 
striking the film (an approximation that assumes that a mean illumination level 
exposes the film to a mean opacity), and because the amount of illumination 
striking the film is linearly related to the density gradients in the test section 
(assuming that integration and diffraction effects are negligible, an approxima- 
tion that is not too good), this scan of the negative opacity by the optical com- 
parator-photomultiplier system produces a plot that is directly related to the 
distribution of perturbation density in the test section. The plot needs two 
calibration factors to specify it completely; the perturbation density that corre- 
sponds to the meanillumination level passing through the negative, and a number 
that gives the change in perturbation density for a given change in negative 

t Single-flash schlieren pictures were used as data sou'ces for the density-distribution 
measurements. 
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opacity. Because these two calibration factors were not readily available, but 
mainly because the density distribution was not of major interest to this study, 
we were content with plotting the experimental distribution of perturbation 
density against the theoretical distribution and forcing the vertical heights of 
the end-points of the two curves to match. The final data plots, discussed in the 
next section, are therefore only qualitative presentations to show that the 
shape of the distribution curves in theory and experiment are reasonably well 
matched. 

Error bars on the data curves are calculated from two factors; measured 
scatter in the speed measurements, and estimated errors in the optical com- 
parator measurements of the perturbation amplitudes on the schlieren negatives. 
The bars are of such a height that they represent a confidence interval of 50 yo ; 
that is, if the data are scattered normally about the mean value, then half of 
the data would fall inside the confidence interval. 

5. Experimental results and discussion 
Plate 1 shows a typical sequence of schlieren photographs illustrating the 

oscillating and damping process for the perturbations on the reflected shock 
front. The two flashes of the stroboscope occurred 10 ,us apart, the wall had an 
amplitude of 0.015 in., the inuident Mach number of the shock was 1-45. The 
second and third pictures in the sequence indicate the oscillating behaviour of 
the perturbations. Note that even for this slightly sloped wall the reflected shock- 
is not sinusoidal after it has travelled a short distance from the wall; the theory, 
in essence, predicts the damping of the first term in a series expansion (of the 
initial reflected shock-shape). It appears that the non-sinusoidd reflected shock- 
shape is caused by the higher order terms. I n  any case, because the higher- 
frequency terms damp sooner, the dominant term in the series expression for the 
reflected shock-shape a t  any time is still the lowest order term; that is, we expect 
the total amplitude of the reflected shock at  any time to be closely approximated 
by the amplitude of the lowest harmonic in the shape, the same harmonic that is 
described by the theory of $2. 

Plate 2 shows shock reflexion from a steeply sloped wavy wall (amplitude 
0.058 in); the incident Mach number was 1.45. Note two significant differences 
between the steeply sloped-wall reflexion and the slightly sloped-wall reflexion: 
the initial shock-shape in the former is not sinusoidal at all, and the pattern of 
disturbances behind the reflected shock is much more distincb (and, thus, 
stronger) for the steep-wall reflexion. Plate 3 indicates the sequence of reflexion 
from a Gaussian wall; again, the incident Mach number is 1.45. The most striking 
feature of these photographs is the absence of oscillation of the shock shape. 
These last pictures show especially well the corner-waves issuing from the non- 
perfect intersection of the shock-tube walls and nearly flak end-wall; since the 
perturbation-amplitude measurements are taken along the centre line of the 
shock tube, the corner-waves have no effect on the data until they have touched 
the centre of the reflected shock. This does not occur until the shock has passed 
out of the field of view of the schlieren system. 
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The curves are a plot of non-dimensional perturbation amplitude (amplitude 
at a given time divided by initial amplitude) versus non-dimensional distance 
from the wall (actual distance, xs = U,t, divided by the wall wavelength or the 
Gaussian standard deviation). 
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FIGURE 7. Comparison of experimental and theoretical results for reflexion from a sinu- 
soidal wall; measured incident Mach number (solid line) 1.45, measured reflected Mach 
number (broken line) 1.36. Circle data points are for amp/wavelength of the wall equal to 
0.026; squares for 0.050 wall; triangles for 0.100. Vertical dotted lines indicate the point 
beyond which the reflected front no longer appears to be sinusoidal. 
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FIGURE 8. Comparison of experimental and theoretical results for reflexion from a sinu- 
soidal wall; same legend as figure 7 .  Mi = 1.09, M ,  = 1.07. 

Figure 7 gives the experimental results for measurements of the amplitude of 
perturbations on a shock wave that has been reflected normally from a sinusoidal 
wall; the incident Mach number was 1-45 in air. The three different; plotting 
symbols refer to data from wavy walls of three different amplitudes; circles 
correspond to 0.0015, squares to 0.029, and triangles to 0.058 in. amplitude. The 
wavelength was 0.580 in. for all three walls. The vertical dotted lines indicate 
the approximate point beyond which the reflected shock no longer appeared to 
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be near-sinusoidal. The plotted curves are the theoretical perburbation damping 
curves based on the measured incident Mach number (1.45, solid line) and the 
measured reflected Mach number (1.36, dotted). Figure 8 is the same type of 
presentation but for 1.09 and 1-07 incident and reflected Mach numbers, 
respectively. 
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FIGURE 9. Comparison of experimental and theoretical results for reffexion from a Gaussian 
wall; lower curves for Mi = 1-45 and M ,  = 1.36; upper curves for M ,  = 1-09 and 
M ,  = 1-07. 

Figure 9 gives the experimental results for both sets of Mach numbers for the 
shock reffexion from a Gaussian wall. Again, the solid and dotted curves refer to 
the theoretically predicted damping based on the measured incident and re- 
flected shock speeds, respectively. 

Figure 10 shows the qualitative agreement between theory and experiment for 
the distribution of perturbation density between the wavy wall and the reflected 
shock front. As discussed in $4, the starting point and total spread of the data 
were forced to  fit the theory; only the general shape of the curves are to be 
compared. 

For the wavy wall reflexions, the predicted curves and the data are in excellent 
agreement, especially for the locations of the zero-crossing; note that the dotted 
theoretical curve (based on the measured reflected Mach number) fits the data 
better. The data for the least-sloped wall (circle data-points) show amplitude 
variations that are somewhat larger than predicted; this indicates that the ‘ten- 
sion’ of the shock shape (if the shock is thought of as an oscillating, semi-per- 
meable membrane) is less in the real case than in the mathematical model of a 
step-shock. This is possibly due to the finite thickness of the real shock, or to the 
presence of shear stresses that hinder the transverse propagation of perturbations 
(the mechanism of free-space shock stability). t 

It is seen from the comparison of the data for the three different wavy walls 

t See a forthcoming paper by the authors on ‘Free-Space Damping of Perturbations 
on a Plane Shock Wave’. 



Journal of Fluid Mechanics, Vob. 31, part 3 Plate 1 

( c )  (4 
PLATE 1.  Sequence of two-flash stroboscopic schlieren photographs showing damping and 
oscillating behaviour of reflected front ; reflected front moves from left to  right ; time 
interval between flashes, 10 ps. Sinusoidal wall has 0.015 in. amplitude and 0.580 in. 
wavelength ; incident Mach number is 1.45. 
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(a )  ( b )  

PLATE 2 .  Seqncnce of two-flash stroboscopic schlicren photographs showing reflexion from 
a steeply slopod sinusoidal wall; 0.048 in. amplitude and 0.590 in. wavelength; incidcnt, 
Mach number is 1.45; reflected front moves from loft to right; tinlo int,crval between 
flashes, 10 ,us. 
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(a 1 (h )  

PLATE 3. Sequence of two-flash stroboscopic schlicren photographs showing reflexion from 
Gaussian wall; 0.050 in. peak amplitude: 0.182 in. standard deviation; incident Mach 
number is 1.45; rrflectcd front mows from left to right: time interval between flashtw, 
10 ps. 
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that non-linearities in wall slope (steep walls) seem to affect the damping rate in 
two ways: the extremals of the oscillations become smaller and smaller, and the 
frequency of oscillations becomes slightly faster. 

We are unable to explain the relatively poor agreement between theory and 
experiment for the low Mach number Gaussian wall data. The wavy wall data 
for the same Mach number show excellent agreement. It is interesting that 
Lapworth’s low Mach number data was worse than the higher Mach number 
results; his experiment involved a non-sinusoidal shock also. 

004 1 1 

xlh 

FIGURE 10. Comparison of experimental and theoretical results for distribution of per- 
turbation density between sinusoidal wall and reflected shock-front ; amp/wavelengt.h of 
wall is 0.026; incident Mach number is 1.45. 

6. Conclusions 
We have shown excellent agreement between a linearized theory for the damp- 

ingof perturbations ona shockwave reflected from a nearly flat surface and shock- 
tube experiments for shock reflexion from sinusoidal and Gaussian walls. Since 
the perturbation damping behaviour is dependent on the medium through which 
the shock is moving, it appears that the reflexion theory could be used as a 
diagnostic technique to obtain information about the state of the fluid medium; 
a possible example would be a simple chemically reacting system through which 
a perturbed shock wave is propagated and its damping behaviour observed. 

The experiments only tested the theory for relatively low Mach numbers, 
primarily because real shock-tube effects that were not considered in the theory 
would have arisen at  any higher Mach numbers than the ones used (specifically 
the boundary-layer reflected shock interaction that is a necessary part of shock- 
tube experiments in the medium-Mach number r6gime). It is likely that high 
Mach number experiments would, of necessity, have to be modelled by a theory 
that accounts for chemical reactions and changing gas properties. 

The discussions with Prof. Severin Raynor and the machine shop work of 
Messrs Robert Klaub and William Rahm are gratefully acknowledged. 
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